MEDFORD HIGH SCHOOL
COURSE SYLLABUS

Department: Mathematics
Course Title: Advanced Placement Calculus AB
Level and/or Grade: AP; Grade 11/12
Prerequisite: B+ or better in Honors Pre-Calculus or teacher recommendation and department approval

Course Description:
This course is equivalent to a first-year college course in calculus. A theoretical foundation is laid through a treatment of functions, graphs, and limits; derivatives; and integrals. Emphasis is placed upon an understanding of the underlying principles of calculus rather than on memorizing formulas. Processes used include problem solving, reasoning, communication, representation, connections, and technology integration. Students electing this course are expected to take the Advance Placement Examination in May and, depending on the results, may be granted credit and/or appropriate placement by a participation college.

Instructional Programs:

Primary Textbook:
- Calculus of a Single Variable 8e; Larson, Hostetler, Edwards; Houghton Mifflin; 2006

Supplementary Materials:
- Calculus: Graphical, Numerical, Algebraic; Finney/Thomas/Demana/Waits; Addison Wesley; 2007
- Calculus from Graphical, Numerical, and Symbolic Points of View; Ostebee/Zorn; 1997
- AP Calculus AB/BC: Preparing for the Advanced Placement Examinations; Maxine Lifshitz; AMSCO Publication; 2004
- AP Calculus AB Course Requirements; College Board
- Multiple Choice & Free Response Questions in Preparation for the AP Calculus AB Examination; D & S Marketing, Inc.
- AP Central web resources

Mathematical Tools:
- TI-84+ Graphing Calculators for modeling/representation
- Various websites for demonstration and visualization purposes

Learning Standards: Through communication, representation, reasoning, making connections, and problem solving, students will be able to...

1. Functions, Graphs, and Limits:
- Solve a variety of equations involving functions using graphical, numerical, analytical, or verbal methods; describe and analyze graphs using technology.
- Understand, calculate, and estimate limits from graphs or tables of data.
- Understand and describe asymptotic behaviors in terms of limits involving infinity; compare relative
magnitudes of functions and their rates of change (e.g. contrasting exponential, polynomial, and logarithmic growth).

- Develop an intuitive understanding of continuity, and understand continuity in terms of limits.
- Develop a geometric understanding of graphs of continuous functions (Intermediate Value Theorem and Extreme Value Theorem).

II. Derivatives:
- Understand and develop the concepts of derivatives; define and interpret derivatives presented graphically, numerically, and analytically.
 - Interpret derivatives as instantaneous rates of change.
 - Define derivative as the limit of the difference quotient.
 - Understand the relationship between differentiability and continuity.
- Understand the derivative at a point: slope of curve at a point, tangent line to a curve at a point, rates of change.
- Understand derivatives as functions.
 - Solve equations involving derivatives; translate verbal descriptions into equations and vice versa.
 - Understand the concept of the Mean Value Theorem and its geometric consequences.
 - Discover the corresponding characteristics of graphs of f, f', and f''.
 - Understand the relationship between the increasing and decreasing behavior of f and the sign of f'.
 - Understand the relationship between the concavity of f and the sign of f''.
 - Understand the concept of inflection points.
- Demonstrate an understanding of the relationship between the derivative and the definite integral.
- Apply derivatives.
 - Solve related rate problems including velocity, speed, and acceleration, derivatives of inverse functions, and geometric interpretations.
 - Analyze curves.
 - Solve optimization problems, including absolute and relative extreme.
 - Interpret differential equations geometrically; understand the relationship between slope fields and solution curves for differential equations.
- Understand derivatives as functions: power, exponential, logarithmic, and trigonometric.

III. Integrals:
- Identify and understand the meaning of the definite integral both as a limit of Riemann sums and as the net accumulation of change; solve authentic problems involving integrals.
- Understand basic properties of definite integrals (e.g. additivity, linearity).
- Apply and model integrals in physical, biological, or economic situations. Solve problems involving integrals: e.g. use integral rate of change to give accumulated change, find area of region, find volume of solid with cross sections, find average value of a function, and find distance traveled by a particle along a line.
- Apply the Fundamental Theorem of Calculus to evaluate definite integrals and to represent an antiderivative.
- Understand techniques and applications of antidifferentiation.
- Apply antidifferentiation (e.g. motion along a line; modeling exponential growth).
- Understand the concept of the Riemann sum; use the Riemann sum and trapezoidal sum to approximate definite integrals of functions represented algebraically, graphically, and by tables of values.
- Understand properties of definite integrals and their interpretations.
Course Alignment with High School 21st Century Student Learning Expectations:

Students will...
1. Become self-directed learners as they
 - Set goals and responsibility for learning.
 - Select strategies for problem solving.
 - Monitor one’s own learning through reflection.
2. Communicate effectively as they
 - Express ideas precisely and with coherence.
 - Use a variety of representations to express mathematics to multiple audiences.
 - Use appropriate vocabulary and symbolic notation effectively.
3. Apply problem-solving skills and critical and creative thinking as they
 - Apply mathematical knowledge to new, non-routine situations.
 - Evaluate and test different routes to solving a problem.
 - Demonstrate persistence.
4. Use technology appropriately as a tool for learning, collaboration, presentation, research, and design as they
 - Demonstrate proficiency with the graphing calculator as a tool for learning.
 - Communicate and collaborate with educators and peers using online systems.
 - Use technology strategically for independent learning, calculation and representation.
5. Act with integrity, respect and responsibility toward themselves, others, and the environment as they
 - Actively participate in class and demonstrates respectful behavior.
 - Respond to new and diverse perspectives.
 - Critique the work of others and accept the critique of others.
6. Exhibit flexibility and adaptability as they
 - Recognize mistakes as an essential part of learning.
 - Revise thinking to apply in context.
 - Approach new experiences with confidence.
7. Collaborate in diverse groups to share knowledge, build consensus, and achieve goals as they
 - Work in pairs and small groups to discuss and problem solve.
 - Construct team positive interactions.
 - Discuss a variety of viewpoints and demonstrate logical reasoning to make decisions.
8. Practice leadership in and service to their community as they
 - Support their peers in learning mathematics.
 - Participate in departmental activities that promote the understanding mathematics.
 - Use mathematical models to solve community problems.
9. Become contributing citizens in a global society as they
 - Understand the role of mathematics in shaping the world.
 - Exchange ideas and resources beyond the classroom.
 - Make career choices that positively impact future of the mathematical learning.

Scope & Sequence - Units of Study:

<table>
<thead>
<tr>
<th>LIMITS & CONTINUITY</th>
<th>TIMELINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topics:</td>
<td></td>
</tr>
<tr>
<td>Limits: Definition of Limit; Properties of Limits; One-sided and Two-sided Limits</td>
<td></td>
</tr>
</tbody>
</table>
- **Continuous Functions**: Continuity at a Point; Continuous Functions; Algebraic Combinations; Composites; Intermediate Value Theorem for Continuous Functions
- **The Sandwich Theorem**
- **Limits Involving Infinity**: Finite Limits as \(x \to \infty \); End Behavior Models (Polynomial, Rational) & Asymptotes
- **Controlling Function Outputs - Target Values**: Aiming at the target; Controlling Outputs as \(x = \infty \)
- **Defining Limits Formally w/Epsilons and Deltas**: Testing/Proving Limits; Finding Deltas for Given epsilons; Locally Straight Functions; 1-Sided vs. 2-Sided; Infinity

DERIVATIVES

Topics:
- **Slopes, Tangent Lines, & Derivatives**: Average Rates of Change; Slopes & Tangent Lines (Equations); Derivative of Function; Differentiable vs. Continuous Functions
- **Numerical Derivatives**: NDER Procedure; Graphs of Derivatives
- **Differentiation Rules**: Positive Integer Powers, Multiples, Sums, and Differences; Products and Quotients; Negative Integer Powers of \(x \); Value Theorem for Derivatives; Second and Higher Order Derivatives
- **Velocity and Other Rates of Change**: Free Fall; Linear Animation; Velocity; Speed; Acceleration; Horizontal Motion; Other Rates of Change; Derivatives in Economics
- **Derivatives of Trigonometric Functions**: Derivative of the Sine Function; Derivative of the Cosine Function; Simple Harmonic Motion; Derivatives of Other Basic Trigonometric Functions
- **The Chain Rule**: The Chain Rule; Integer Powers of Differentiable Functions; “Outside-Inside” Rule; Derivative Formulas that Include the Chain Rule
- **Implicit Differentiation and Fractional Powers**: Graphing Curves; Implicit Differentiation; Lenses, Tangents, and Normal Lines; Derivatives of Higher Order; Fractional Powers of Differentiable Functions
- **Linear Approximations & Differentials**: Local Approximation; Linearizations (Linear Functions); Approximations; Estimating Change with Differentials; Absolute, Relative, & Percentage Change; Sensitivity; Approximation Error; Formulas for Differentials

APPLICATIONS OF DERIVATIVES

Topics:
- **Maxima, Minima, & Mean Value Theorem**: Maxima and Minima – Local and Absolute; Mean Value Theorem; Rolle’s Theorem; Physical Interpretation; Increasing and Decreasing Functions; Other Consequences
- **Predicting Hidden Behavior**: First Derivative; Second Derivative Test for Concavity; Points of Inflection; First Derivative Test for Local Extreme Values; Second Derivative Test for Local Extreme Values
- **Polynomial Functions, Newton’s Method, & Optimization**: Polynomial Functions; Graphs of Cubic and Quartic polynomials; Newton’s Method; Differentials; Optimization
- Rational Functions & Economics Applications: Graphs of rational functions; Optimization Examples from Mathematics, Business, Industry, and Economics
- Radical & Transcendental Functions: Radical, Trigonometric, Exponential, and Logarithmic Functions
- Related Rates of Change: Solving Related Rate Problems
- Antiderivatives, Initial Value Problems, & Mathematical Modeling: Second and Third Corollaries of Mean Value Theorem; Finding Antiderivatives; Slope Fields and Euler’s Method; Differential equations & Initial Value Problems; Solution Curves; Mathematical Modeling & Computer Simulations

INTEGRATION

Topics:
- Calculus & Area: Regions Bounded by Curves; Area under Graph of Nonnegative Continuous Function; Rectangular Approximation Method (RAM); Sigma Notation and Algebra Rules for Finite Sums; Computing Area
- Definite Integrals: Riemann Sums; Terminology and Notation of Integration; Definite Integral and Area; NINT Procedure; Constant Functions; Integrals on a Calculator; Discontinuous Integrable Functions
- Definite Integrals & Antiderivatives: Properties of Definite Integrals; Average Value of a Function; Mean Value Theorem for Definite Integrals; Connecting Differential and Integral Calculus
- The Fundamental Theorem of Calculus: Fundamental Theorem, Part 1; Graphing the Function $\int_a^x f(t) \, dt$; Fundamental Theorem, Part 2; Area Connection; Analyzing Antiderivatives Graphically; Average Daily Inventory
- Indefinite Integrals: Indefinite Integral of a function; Formulas and rules; Supporting Indefinite Integral Evaluation Graphically; Integrals of $\sin^2 x$, $\cos^2 x$, and $(\sin x)/x$; Initial value Problems
- Integration by Substitution – Running the Chain Rule Backward: Power Rule in Integral Form; Substitution Method of Integration; Substitution in Definite Integrals
- Numerical Integration – The Trapezoidal Rule & Simpson’s Method: Trapezoidal Rule; Simpson’s Rule; Error Analysis

APPLICATIONS OF DEFINITE INTEGRALS

Topics:
- Areas Between Curves: Area Between Curves – Basic formula; Area Enclosed by Intersecting Curves; Boundaries with Changing Formulas; Integrating with Respect to y; Combining Integrals with Geometry Formulas
- Volumes of Solids of Revolution-Disks and Washers: The Disk Method; Revolving About the y-axis; Solids of Revolution
- Cylindrical Shells – An Alternative to Washers: Basic Shell Formula; Shells About the x-axis; Shifts; Overlapping Regions
- Lengths of Curves in the Plane: Basic Formula; Discontinuities in dy/dx; Short Differential Formula; Curves with Infinite Length
- Areas of Surfaces in Revolution: Basic Formula; Revolution About the y-axis; Short Differential Formula

TIMELINE

- **Quarter 2**
 - Topics: Areas Between Curves, Volumes of Solids of Revolution, Cylindrical Shells, Lengths of Curves in the Plane, Areas of Surfaces in Revolution
- **Quarter 3**
 - Topics: Areas Between Curves, Volumes of Solids of Revolution, Cylindrical Shells, Lengths of Curves in the Plane, Areas of Surfaces in Revolution
THE CALCULUS OF TRANSCENDENTAL FUNCTIONS

Topics:

- **The Natural Logarithm Function:** National Logarithm function; derivative of \(y = \ln x \); Logarithmic Differentiation; Integrals of \(\int \frac{1}{u} \, du \), tan \(x \) and cot \(x \)
- **The Exponential Function:** Exponential functions; Rules of Exponents; Derivatives of Inverses of Differentiable Functions; Law of Exponential Change
- **Other Exponential & Logarithmic Functions:** Function and Graph of \(a^x \); Power rule for Differentiation – Final Form; Exponential & Logarithmic Functions
- **The Law of Exponential Change Revisited:** Law of Exponential Change; Radioactive Decay; Resistance to moving Object; Heat Transfer
- **Indeterminate Forms & L’Hopital’s Rule:** Indeterminate Forms; L’Hôpital’s Rule; The Rates at Which Functions Grow; Relative Rates of Growth; Sequential vs. Binary Search
- **The Inverse Trigonometric Functions:** Inverse Trigonometric Functions (Inverse of \(\sec x \), csc \(x \), and cot \(x \)); Arc Sine, Arc Cosine, and Arc Tangent; Right Triangle Interpretations
- **Derivatives of Inverse Trigonometric Functions – Related Integrals:** Derivatives of Inverse Trigonometric Functions
- **Hyperbolic Functions:** Hyperbolic Functions; Derivatives and Integrals; Inverses of Hyperbolic Functions

TECHNIQUES OF INTEGRATION

Topics:

- **Formulas for Elementary Integrals:** Algebraic Procedures & Trigonometric Identities; Mercator’s World Map
- **Integration by Parts:** The Formula; Tabular Integration
- **Integrals Involving Trigonometric Functions:** Products of Sines and Cosines; Integrals of Powers of tan \(x \) and sec \(x \); Definite Integrals of Odd and Even Functions

AP Exam Review

Timeline

<table>
<thead>
<tr>
<th>Topics</th>
<th>Quarter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Natural Logarithm Function</td>
<td></td>
</tr>
<tr>
<td>The Exponential Function</td>
<td></td>
</tr>
<tr>
<td>Other Exponential & Logarithmic Functions</td>
<td></td>
</tr>
<tr>
<td>The Law of Exponential Change Revisited</td>
<td></td>
</tr>
<tr>
<td>Indeterminate Forms & L’Hopital’s Rule</td>
<td></td>
</tr>
<tr>
<td>The Inverse Trigonometric Functions</td>
<td></td>
</tr>
<tr>
<td>Derivatives of Inverse Trigonometric Functions – Related Integrals</td>
<td></td>
</tr>
<tr>
<td>Hyperbolic Functions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topics</th>
<th>2nd half of Quarter 3 and 1st half of Quarter 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas for Elementary Integrals</td>
<td></td>
</tr>
<tr>
<td>Integration by Parts</td>
<td></td>
</tr>
<tr>
<td>Integrals Involving Trigonometric Functions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AP Exam Review</th>
<th>2nd Half of Quarter 4</th>
</tr>
</thead>
</table>